科目名称: 生活と科学		
担当者名: 矢澤 建明		
区分	授業形態	単位数
基礎教育科目	講義	2
授業の目的・テーマ		

現代の日本では、25年前と比べて理工系に進む学生が減り、最先端を誇ってきた日本の工業・科学技術のレベルが下がりはじめていると言われています。これは「理科離れ」と呼ばれる問題で、20年ほど前から叫ばれています。金城大学短期大学部に理工系の学科はありませんが、学生諸君はいずれ人の親になりますし、幼児教育学科の学生は子どもたちと大きくかかわるでしょう。つまり、未来の日本を担う子どもたちを導く立場にあります。学生諸君が、親として、または保育者・教育者として、子どもたちの好奇心を妨げるようであってはいけません。最低限の科学の知識を身に付けておくことが重要です。

授業の達成目標・到達目標

本講義では、科学的な話題をとりあげながらも身近に体験できること・好奇心をふくらまされることを題材に、簡単なサイエンスの知識を得ること・理解できることを目標とします。さらに、学んだことを、他の人に伝えられるようになることが到達目標です。 事前事後学修として、隔週で行われる実験の予習・復習をすることを条件とします。

基礎教育	科目	ディプロマポリシー (卒業認定・学位授与の方針)	重点項目
DP (1)		の精神の涵養」と設立の理念「金城から地球を歩こう」を基に、基礎知 会を理解するとともに多様な文化に対応できる幅広い教養が身について	0
DP (2)		技能を修得し、他者と協調・協働し、社会の一員として、それぞれの専献できる実践力を身につけている。	
DP (3)	> 141 01 1- 11 1 1 1 1	できるよう豊かな人間性を養い、人との関わりの中で自己の考えを的確に、他者の意見を尊重し良好な信頼関係を築いていくことができる。	
DP (4)		、様々な課題に取り組み解決する学修経験を積み重ねることで、その場用力が身についている。	

評価方法/ディプロマポリシー	定期試験	クイズ 小テスト	提出課題 (レポート含む)	その他	合計
全学DP(1)			90	10	100
全学DP(2)					0
全学DP(3)					0
全学DP(4)					0
			•		100

実務経験のある教員の担当	担当教員の実務経験の内容(内容・経験年数を記載)		
なし	《内容 1》	《経験年数1》	
	《内容2》	《経験年数2》	
	《内容3》	《経験年数3》	
	《内容4》	《経験年数4》	

備考

特殊な事情により、対面授業ができない場合、「オンライン上で映像を視聴してもらう」、「テキストデータ・画像データを使って学生からの授業内課題・次回まで課題を提出する」、「学生同士がテキストベースで質問・議論しあう」という、教室外での授業実施を行うことがある。

到達目標ルーブリック	良好	おおむね良好	努力を要する	難あり
自然科学に対する態度	自分の知らなかった自然科 学現象に対して好奇心を 持って理解しようとする態 度	自然科学現象に対して 興味を持っている態度	自然科学は専門分野で はないという態度	自然科学に対して無関 心な態度
考察力	授業内容について、考察が 的確で、課題が大変にわか りやすく記載されている。	授業内容について、課 題がわかるように記載 されている。	授業内容について、課題 の記載はあるものの、わ かりにくい。	授業内容について、課 題が理解不能である。
実験に対する力	実験の際に、まわりと協力して、楽しみながら、 かつ正確に実験できる。	実験の際に、正確性はないものの、まわりと協力 しながら実験できる。	実験をなんとかこなし ている。	実験に対して、傍観者になっている。
自然科学について 他者に伝える力	学んだ自然科学のことに ついて、他者にわかりや すく説明できる。	学んだ自然科学のことに ついて、他者に説明でき る。	学んだ自然科学のことに ついて、なんとか他者に 説明できる。	学んだ自然科学のことに ついて、他者に説明でき ない。

授業の内容	・計画	事前事後学修の内容	事前事後学修時間 (分)
第1回	サイエンス全般について、理科離れの現状	本シラバスを精読してまとめておくこと。	20分
第2回	力と運動量1 ペットボトルロケットについて	理科離れについて復習し、運動量について復習 してまとめておくこと。	40分
第3回	力と運動量2 ペットボトルロケット実験(グループ ディスカッションをしながら実験を行う)	力と運動量を復習し、ペットボトルロケットの 予測をしてまとめておくこと。	40分
第4回	慣性の法則1 平らな道とへこんだ道の準備	ペットボトルロケット実験の結果を復習する。慣 性の法則についての課題を記入すること。	40分
第5回	慣性の法則2 平らな道とへこんだ道はどちらが速 い? (グループワークで結論を導き出す)	慣性の法則を復習し、実験の予習・予測をまと めておくこと。	40分
第6回	円運動について。遠心力と向心力の理解度をクリッ カーで確認する。	前回の実験内容を復習する。また、遠心力が働 く現象を列挙しておく。	40分
第7回	円運動について、ブーメランをグループで飛ばしなが ら、向心力との関係を探る。	円運動について復習する。また、ブーメランが なぜ戻るか予測しておく。	40分
第8回	動電気 電流・電圧と仕事	ブーメランが戻るしくみを復習する。また、電 気について予習しまとめておく。	40分
第9回	静電気 なぜビリッとくるか(グループワークで静電 気に感電する条件を考える)	静電気実験の予測をしておく。	40分
第10回	光は量子 CD-ROMとレーザポインタを使って光を調べる	静電気について復習しまとめておく。また、波 について現象を列挙しておく。	40分
第11回	光は量子 蛍光灯の光のスペクトルを調べる。	スペクトルについて予習しまとめておく。	40分
第12回	量子・原子力の理解	量子について予習し、まとめておく。	40分
第13回	質量はエネルギー あめ玉を使った核分裂。核分裂はなぜ止まらない?	量子の不思議さについて復習し、量子解釈についての自分の考えをまとめておく。	40分
第14回	相対性理論とエネルギー	核分裂について説明できるようにまとめてお く。	40分
第15回	まとめ。トンデモ科学を斬る	相対性理論とエネルギーの公式についてまとめ ておく。	40分

事後学修時間については、受講するにあたっての最低限の目安を明記したが、単位取得のためには原則として授業時間と事前 事後学修を含め学則第17条の2で規定された学修時間が必要である。 また、事前事後学修としては、次回までの課題プリント(小レポート)をまとめることになる。

成績評価の方法・基準

定期試験は、実施しない。 その他の評価配分は、以下のとおりである。 毎回配付するプリント (講義レポート) を30%、準備学習の課題を30%、最終レポートを30%、 受講中の活動状況を10%で評価する。

課題に対してのフィードバック

事前事後学修の課題をルーブリックで評価し、返却する。

教科書・参考書

教科書は、指定しない。毎回プリントを配付する。また、科学に関するものはすべて参考となる。